Exercise
$cot\left(x\right)=cos\left(x\right)sin\left(x\right)+cos^3\left(x\right)csc\left(x\right)$
Step-by-step Solution
Learn how to solve definite integrals problems step by step online. Prove the trigonometric identity cot(x)=cos(x)sin(x)+cos(x)^3csc(x). Starting from the right-hand side (RHS) of the identity. Factor the polynomial \cos\left(x\right)\sin\left(x\right)+\cos\left(x\right)^3\csc\left(x\right) by it's greatest common factor (GCF): \cos\left(x\right). Applying the cosecant identity: \displaystyle\csc\left(\theta\right)=\frac{1}{\sin\left(\theta\right)}. Multiply the fraction by the term .
Prove the trigonometric identity cot(x)=cos(x)sin(x)+cos(x)^3csc(x)
Final answer to the exercise
true