Exercise
$tan\left(x\right)+cot\left(x\right)=sec\left(x\right)cosec\left(x\right)$
Step-by-step Solution
Learn how to solve polynomial factorization problems step by step online. Prove the trigonometric identity tan(x)+cot(x)=sec(x)csc(x). Starting from the right-hand side (RHS) of the identity. Applying the secant identity: \displaystyle\sec\left(\theta\right)=\frac{1}{\cos\left(\theta\right)}. Applying the cosecant identity: \displaystyle\csc\left(\theta\right)=\frac{1}{\sin\left(\theta\right)}. Multiplying fractions \frac{1}{\cos\left(x\right)} \times \frac{1}{\sin\left(x\right)}.
Prove the trigonometric identity tan(x)+cot(x)=sec(x)csc(x)
Final answer to the exercise
true