Exercise
$\tan\left(a\right)+\cot\left(a\right)=\sec\left(a\right)\csc\left(a\right)$
Step-by-step Solution
Learn how to solve proving trigonometric identities problems step by step online. Prove the trigonometric identity tan(a)+cot(a)=sec(a)csc(a). Starting from the right-hand side (RHS) of the identity. Applying the secant identity: \displaystyle\sec\left(\theta\right)=\frac{1}{\cos\left(\theta\right)}. Applying the cosecant identity: \displaystyle\csc\left(\theta\right)=\frac{1}{\sin\left(\theta\right)}. Multiplying fractions \frac{1}{\cos\left(a\right)} \times \frac{1}{\sin\left(a\right)}.
Prove the trigonometric identity tan(a)+cot(a)=sec(a)csc(a)
Final answer to the exercise
true