Exercise
$sec\left(x\right)-tan\left(x\right)sin\left(x\right)=\frac{1}{sec\left(x\right)}$
Step-by-step Solution
Learn how to solve factorization problems step by step online. Prove the trigonometric identity sec(x)-tan(x)sin(x)=1/sec(x). Starting from the left-hand side (LHS) of the identity. Applying the tangent identity: \displaystyle\tan\left(\theta\right)=\frac{\sin\left(\theta\right)}{\cos\left(\theta\right)}. Multiplying the fraction by \sin\left(x\right). Applying the secant identity: \displaystyle\sec\left(\theta\right)=\frac{1}{\cos\left(\theta\right)}.
Prove the trigonometric identity sec(x)-tan(x)sin(x)=1/sec(x)
Final answer to the exercise
true