Exercise
$\frac{-1}{\tan-\sec}=\frac{1+\sin}{\cos}$
Step-by-step Solution
Learn how to solve factor by difference of squares problems step by step online. Prove the trigonometric identity -1/(tan(x)-sec(x))=(1+sin(x))/cos(x). Starting from the left-hand side (LHS) of the identity. Rewrite \frac{-1}{\tan\left(x\right)-\sec\left(x\right)} in terms of sine and cosine functions. Combine fractions with common denominator \cos\left(x\right). Divide fractions \frac{-1}{\frac{\sin\left(x\right)-1}{\cos\left(x\right)}} with Keep, Change, Flip: a\div \frac{b}{c}=\frac{a}{1}\div\frac{b}{c}=\frac{a}{1}\times\frac{c}{b}=\frac{a\cdot c}{b}.
Prove the trigonometric identity -1/(tan(x)-sec(x))=(1+sin(x))/cos(x)
Final answer to the exercise
true