∫3∞11+x2dx\int_{\sqrt{3}}^{\infty}\frac{1}{1+x^2}dx∫3∞1+x21dx
15t + −5t = −1015t\:+\:-5t\:=\:-1015t+−5t=−10
∫(x4−3x32+7x+5)dx\int\left(x^4-3x^{\frac{3}{2}}+\frac{7}{\sqrt{x}}+5\right)dx∫(x4−3x23+x7+5)dx
x2+14x+9x^2+14x+9x2+14x+9
−49+7⋅(−5)-49+7\cdot\left(-5\right)−49+7⋅(−5)
(−2)(−2)\frac{\left(-2\right)}{\left(-2\right)}(−2)(−2)
ddxlog31(2x−4)\frac{d}{dx}\log_{31}\left(2x-4\right)dxdlog31(2x−4)
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!