$\frac{d^{2}y\left(t\right)}{dt^{2}}+2\xi\omega_{n}\frac{dy\left(t\right)}{dt}+\omega_{n}^{2}y\left(t\right)=k\omega_{n}^{2}u\left(t\right)$
$\int\frac{1}{\sqrt{x}\left(2+\sqrt{x}\right)^6}dx$
$x^2-3x+6=\:-3x-7x$
$\left(x^2+5\right)\cdot\left(x^2-5\right)$
$64+r^6$
$3^5-4$
$4x^2-8x-3=0$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!