limx→∞(−2x3+4x5x3+4x5)\lim_{x\to\infty}\left(\frac{-2x^3+4x^5}{x^3+4x^5}\right)x→∞lim(x3+4x5−2x3+4x5)
2x−910\frac{2x-9}{10}102x−9
(x+1)2(x−1)2\left(x+1\right)^2\left(x-1\right)^2(x+1)2(x−1)2
x5+243x+6\frac{x^5+243}{x+6}x+6x5+243
cos2(x)sin(x)=cot(x)sec(x)\frac{\cos^2\left(x\right)}{\sin\left(x\right)}=\frac{\cot\left(x\right)}{\sec\left(x\right)}sin(x)cos2(x)=sec(x)cot(x)
−7x=0-7x=0−7x=0
−420-\frac{42}{0}−042
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!