Intermediate steps
Simplify cos(7x)sin(x)\cos\left(7x\right)\sin\left(x\right)cos(7x)sin(x) into sin(8x)+sin(−6x)2\frac{\sin\left(8x\right)+\sin\left(-6x\right)}{2}2sin(8x)+sin(−6x) by applying trigonometric identities
(x−3)(x+5)(x2+1)=0\left(x-3\right)\left(x+5\right)\left(x^2+1\right)=0(x−3)(x+5)(x2+1)=0
(4.2)⋅(−0.5)\left(4.2\right)\cdot\left(-0.5\right)(4.2)⋅(−0.5)
−y+7y-y+7y−y+7y
4.8x2−12x+54.8x^2-12x+54.8x2−12x+5
8x2−14x+38x^2-14x+38x2−14x+3
x2−42x+152x^2-42x+152x2−42x+152
− 9 − 35 + 22 − 9 + 8 − 11-\:9\:-\:35\:+\:22\:-\:9\:+\:8\:-\:11−9−35+22−9+8−11
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!