$\frac{dy}{dx}xy+x=1$
$\frac{d^2}{dx^2}\frac{x^3}{1-x}$
$\left(x+y\right)\:\left(z-t\right)$
$\tan\left(x\right)\cdot\csc\left(x\right)^2-\tan\left(x\right)\cdot\cot\left(x\right)^2$
$\tan^2\left(c\right)+\sin^2\left(c\right)+\cos^2\left(c\right)=\sec^2\left(c\right)$
$\lim_{x\to\infty}\left(\frac{2x}{\sqrt{x^2+1}}\right)$
$\left(2x-y\right)\left(4x^2\:+2xy+y^2\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!