Exercise
$\int\frac{x-14}{\left(x+4\right)\left(x-2\right)}dx$
Step-by-step Solution
Learn how to solve integrals by partial fraction expansion problems step by step online. Find the integral int((x-14)/((x+4)(x-2)))dx. Rewrite the fraction \frac{x-14}{\left(x+4\right)\left(x-2\right)} in 2 simpler fractions using partial fraction decomposition. Expand the integral \int\left(\frac{3}{x+4}+\frac{-2}{x-2}\right)dx into 2 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int\frac{3}{x+4}dx results in: 3\ln\left(x+4\right). The integral \int\frac{-2}{x-2}dx results in: -2\ln\left(x-2\right).
Find the integral int((x-14)/((x+4)(x-2)))dx
Final answer to the exercise
$3\ln\left|x+4\right|-2\ln\left|x-2\right|+C_0$