Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Integrate by partial fractions
- Integrate by substitution
- Integrate by parts
- Integrate using tabular integration
- Integrate by trigonometric substitution
- Weierstrass Substitution
- Integrate using trigonometric identities
- Integrate using basic integrals
- Product of Binomials with Common Term
- Load more...
Rewrite the fraction $\frac{x^3+x-1}{\left(x^2+1\right)^2}$ in $2$ simpler fractions using partial fraction decomposition
Learn how to solve trigonometric integrals problems step by step online.
$\frac{x}{x^2+1}+\frac{-1}{\left(x^2+1\right)^{2}}$
Learn how to solve trigonometric integrals problems step by step online. Find the integral int((x^3+x+-1)/((x^2+1)^2))dx. Rewrite the fraction \frac{x^3+x-1}{\left(x^2+1\right)^2} in 2 simpler fractions using partial fraction decomposition. Expand the integral \int\left(\frac{x}{x^2+1}+\frac{-1}{\left(x^2+1\right)^{2}}\right)dx into 2 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int\frac{x}{x^2+1}dx results in: \frac{1}{2}\ln\left(x^2+1\right). The integral \int\frac{-1}{\left(x^2+1\right)^{2}}dx results in: -\left(\frac{1}{2}\arctan\left(x\right)+\frac{x}{2\left(x^2+1\right)}\right).