Exercise
$\int\frac{8}{\left(x^3-4x\right)}dx$
Step-by-step Solution
Learn how to solve integrals by partial fraction expansion problems step by step online. Find the integral int(8/(x^3-4x))dx. Rewrite the expression \frac{8}{x^3-4x} inside the integral in factored form. Rewrite the fraction \frac{8}{x\left(x+2\right)\left(x-2\right)} in 3 simpler fractions using partial fraction decomposition. Expand the integral \int\left(\frac{-2}{x}+\frac{1}{x+2}+\frac{1}{x-2}\right)dx into 3 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int\frac{-2}{x}dx results in: -2\ln\left(x\right).
Find the integral int(8/(x^3-4x))dx
Final answer to the exercise
$-2\ln\left|x\right|+\ln\left|x+2\right|+\ln\left|x-2\right|+C_0$