$\int\left(\frac{2x}{\left(x^2+4\right)^2+9}\right)dx$
$3\cos\left(x\right)+4=0$
$x^2+x+3\ge0$
$\frac{dy}{dx}=\frac{y^3}{\sqrt{x+2}}$
$\int_{-1}^1\arctan\left(x\right)dx$
$\int_{-1}^2\left(\sqrt{1+4x^2}\right)dx$
$2\left(s.cos\left(t\right)\right)\left(-s.\:sen\left(t\right)\right)-2\left(s.sent^2\right)\left(2s.t.cos\left(t^2\right)\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!