Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Prove from LHS (left-hand side)
- Prove from RHS (right-hand side)
- Express everything into Sine and Cosine
- Exact Differential Equation
- Linear Differential Equation
- Separable Differential Equation
- Homogeneous Differential Equation
- Integrate by partial fractions
- Product of Binomials with Common Term
- FOIL Method
- Load more...
Starting from the left-hand side (LHS) of the identity
Learn how to solve trigonometric integrals problems step by step online.
$\frac{\sin\left(x\right)+\cot\left(x\right)}{\tan\left(x\right)+\csc\left(x\right)}$
Learn how to solve trigonometric integrals problems step by step online. Prove the trigonometric identity (sin(x)+cot(x))/(tan(x)+csc(x))=cos(x). Starting from the left-hand side (LHS) of the identity. Applying the tangent identity: \displaystyle\tan\left(\theta\right)=\frac{\sin\left(\theta\right)}{\cos\left(\theta\right)}. Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}. Combine all terms into a single fraction with \sin\left(x\right) as common denominator.