∫x2+1x+x4dx\int\frac{x^2+1}{\sqrt{x}+\sqrt[4]{x}}dx∫x+4xx2+1dx
x8−6x4+9x^8-6x^4+9x8−6x4+9
−(a2b2)−(ab)2−1-\left(a^2b^2\right)-\left(ab\right)^2-1−(a2b2)−(ab)2−1
4x2−4x−39=04x^2-4x-39=04x2−4x−39=0
2⋅1282\cdot1282⋅128
∫0∞e−st(2t+πe3t)dx\int_0^{\infty}e^{-st}\left(2t+\pi e^{3t}\right)dx∫0∞e−st(2t+πe3t)dx
−7(w−4)-7\left(w-4\right)−7(w−4)
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!