1
Here, we show you a step-by-step solved example of limits. This solution was automatically generated by our smart calculator:
lim β‘ x β β
5 ( x 2 β 25 x β 5 ) \lim_{x\to\:5}\left(\frac{x^2-25}{x-5}\right) x β 5 lim β ( x β 5 x 2 β 25 β )
ο
Intermediate steps
Simplify x 2 \sqrt{x^2} x 2 β using the power of a power property: ( a m ) n = a m β
n \left(a^m\right)^n=a^{m\cdot n} ( a m ) n = a m β
n . In the expression, m m m equals 2 2 2 and n n n equals 1 2 \frac{1}{2} 2 1 β
( x + 25 ) ( x 2 β 25 ) x β 5 \frac{\left(x+\sqrt{25}\right)\left(\sqrt{x^2}-\sqrt{25}\right)}{x-5} x β 5 ( x + 25 β ) ( x 2 β β 25 β ) β
Calculate the power 25 \sqrt{25} 25 β
( x + 5 ) ( x 2 β 25 ) x β 5 \frac{\left(x+5\right)\left(\sqrt{x^2}-\sqrt{25}\right)}{x-5} x β 5 ( x + 5 ) ( x 2 β β 25 β ) β
Simplify x 2 \sqrt{x^2} x 2 β using the power of a power property: ( a m ) n = a m β
n \left(a^m\right)^n=a^{m\cdot n} ( a m ) n = a m β
n . In the expression, m m m equals 2 2 2 and n n n equals 1 2 \frac{1}{2} 2 1 β
( x + 5 ) ( x β 25 ) x β 5 \frac{\left(x+5\right)\left(x-\sqrt{25}\right)}{x-5} x β 5 ( x + 5 ) ( x β 25 β ) β
Calculate the power 25 \sqrt{25} 25 β
( x + 5 ) ( x β 5 ) x β 5 \frac{\left(x+5\right)\left(x- 5\right)}{x-5} x β 5 ( x + 5 ) ( x β 5 ) β
Multiply β 1 -1 β 1 times 5 5 5
( x + 5 ) ( x β 5 ) x β 5 \frac{\left(x+5\right)\left(x-5\right)}{x-5} x β 5 ( x + 5 ) ( x β 5 ) β
2
Factor the difference of squares x 2 β 25 x^2-25 x 2 β 25 as the product of two conjugated binomials
( x + 5 ) ( x β 5 ) x β 5 \frac{\left(x+5\right)\left(x-5\right)}{x-5} x β 5 ( x + 5 ) ( x β 5 ) β
ο
Explain this step further
3
Simplify the fraction ( x + 5 ) ( x β 5 ) x β 5 \frac{\left(x+5\right)\left(x-5\right)}{x-5} x β 5 ( x + 5 ) ( x β 5 ) β by x β 5 x-5 x β 5
4
Evaluate the limit lim β‘ x β 5 ( x + 5 ) \lim_{x\to5}\left(x+5\right) lim x β 5 β ( x + 5 ) by replacing all occurrences of x x x by 5 5 5
5
Add the values 5 5 5 and 5 5 5
ξ Final answer to the exercise