$\int\left(2\tan\left(3x\right)-\cot\left(3x\right)\right)^2dx$
$\frac{dy}{dx}\left(ye^{x^2+3}=5x\ln\left(y\right)-7\right)$
$\frac{dy}{dx}=\frac{y\cos x}{1+2y^{2}}$
$\tan\left(\frac{x}{2}\right)\csc\left(x\right)=\frac{1}{1+\cos\left(x\right)}$
$\:-\left(-2\right)+\left(-3\right)-\left(+8\right)-\left(-1\right)$
$\int\frac{x+3}{\left(x+1\right)\left(x^2+x+3\right)}dx$
$\frac{1}{6}+\frac{5}{6}+0.5$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!