$\int_0^1\left(\frac{18}{x^2-9}\right)dx$
$\int_{-\infty}^0\frac{1}{\left(x-1\right)^{\frac{2}{3}}}dx$
$\frac{dy}{dx}=-5y=e^{-2t}$
$\frac{x^{4}-x^{3}+4x+2}{x^{2}+3}$
$\frac{5}{x-10x}$
$\lim_{n\to\infty}\left(\frac{e^{2n}}{ln\left(n+3\right)}\right)$
$\frac{dy}{dx}=\frac{y+1}{x\left(y-1\right)}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!