y-(((5x+1)(x+4)^2)/((x^3+6)(x+8)))^(1/5) −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 −3 -2.5 −2 -1.5 −1 -0.5 0 0.5 1 1.5 2 2.5 3 x y
Exercise
y = ( 5 x + 1 ) ( x + 4 ) 2 ( x 3 + 6 ) ( x + 8 ) 5 y=\sqrt[5]{\frac{\left(5x+1\right)\left(x+4\right)^2}{\left(x^3+6\right)\left(x+8\right)}} y = 5 ( x 3 + 6 ) ( x + 8 ) ( 5 x + 1 ) ( x + 4 ) 2
Step-by-step Solution
Intermediate steps
1
Expand the expression ( x + 4 ) 2 \left(x+4\right)^2 ( x + 4 ) 2 using the square of a binomial: ( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^2=a^2+2ab+b^2 ( a + b ) 2 = a 2 + 2 ab + b 2
y = ( 5 x + 1 ) ( x 2 + 8 x + 16 ) ( x 3 + 6 ) ( x + 8 ) 5 y=\sqrt[5]{\frac{\left(5x+1\right)\left(x^{2}+8x+16\right)}{\left(x^3+6\right)\left(x+8\right)}} y = 5 ( x 3 + 6 ) ( x + 8 ) ( 5 x + 1 ) ( x 2 + 8 x + 16 )
Explain this step further
Final answer to the exercise
y = ( 5 x + 1 ) ( x 2 + 8 x + 16 ) ( x 3 + 6 ) ( x + 8 ) 5 y=\sqrt[5]{\frac{\left(5x+1\right)\left(x^{2}+8x+16\right)}{\left(x^3+6\right)\left(x+8\right)}} y = 5 ( x 3 + 6 ) ( x + 8 ) ( 5 x + 1 ) ( x 2 + 8 x + 16 )