$\int_0^{\infty}sin\left(\theta\:\right)edx$
$1+2\sin^2\left(a\right)=1+2\cos^2\left(a\right)$
$\int\frac{2}{\sqrt[2]{9\:+\:x^2}}dx$
$-\left(-8\right)^2+4\left(-8\right)+5$
$\left(x^3-3x\right)\left(x^3+2x\right)$
$-4+3-5+2-8-3+7$
$\lim_{x\to-1}\left(\frac{\left(x\right)\cdot\left(x\right)\cdot\left(x\right)+2x-x-2}{x^2+7x+6}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!