$\lim_{x\to2}\left(\frac{x-2+\sin\left(2x-x^2\right)}{\sqrt[3]{2x+4}-2}\right)$
$\int\frac{x^2-2x+1}{x^4+2x^2+1}dx$
$\left(-7\right)^{35}x\:\left(-7\right)^{11}$
$\frac{3}{x-2}>\:2$
$\int_0^{2x}sin\left(x\right)sin\left(x+1\right)dx$
$\frac{dv}{dt}=e^t\:+v$
$\frac{\frac{2x}{3}12}{9}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!