$\int\frac{x-1}{\left(x^2+4x+5\right)\left(x+1\right)}dx$
$\frac{\cos\left(2x\right)}{\cos\left(x\right)\sin\left(x\right)}$
$x^2-x-42>0$
$\sqrt{36\ 00}$
$\frac{\cos\left(x+y\right)}{\cos x\sin y}=\cot y-\tan x$
$\int_{\frac{\pi}{6}}^{\frac{3\pi}{2}}\left(sen^4\:x\right)dx$
$\left(9x^2-9x\right)-\left(6x^2-6\right)+\left(3x^2-6x+3\right)-\left(5x+5\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!