$\frac{3\cdot\infty^2-2\sqrt{\infty}}{4\left(\infty^2+7\right)}$
$\left(x^2+5x+5\right)$
$\left(3x^2+7y^3\right)\left(9x^4-21x^2y^3+49y^6\right)$
$\left(5a^4-3a+2a^2-4a^3-1\right)\cdot\left(-2a^4-7a^2+2\right)$
$\lim_{x\to0}\left(\frac{3\left(1-\cos\:\left(x\right)\right)}{x}\right)$
$\left(16\right)^3+\left(-7\right)^3+\left(-9\right)^3$
$54\:+\:\left(-8\right)\left(4\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!