$\int ln\left(z\right)dz$
$\left(x-1\right)^2\left(x-3\right)$
$f\left(x\right)=\sqrt{x+\sqrt{\frac{1}{x}}}$
$\int_0^{\frac{1}{2}}\sec^2\left(\frac{\pi}{2}t\right)\tan\left(\frac{\pi}{2}t\right)dt$
$\frac{5}{10}x+\frac{3}{4}x$
$1-9a^4$
$dx+x^2dy=0$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!