Exercise
$x^3-x^{-3}$
Step-by-step Solution
Learn how to solve common monomial factor problems step by step online. Factor the expression x^3-x^(-3). Factor the difference of cubes: a^3-b^3 = (a-b)(a^2+ab+b^2). Simplify \sqrt[3]{x^{-3}} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals -3 and n equals \frac{1}{3}. Simplify \sqrt[3]{x^{-3}} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals -3 and n equals \frac{1}{3}. Simplify \sqrt[3]{\left(x^{-3}\right)^{2}} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals -3 and n equals \frac{2}{3}.
Factor the expression x^3-x^(-3)
Final answer to the exercise
$\left(x-x^{-1}\right)\left(x^2+1+x^{-2}\right)$