$\frac{-2h^2+h}{\left(h^2+1\right)\left(h\right)}$
$\lim_{x\to\infty}\left(\frac{\sqrt{x^2-2x+4}-\sqrt{x^2-6x+3}}{1}\right)$
$x+10+x+5$
$\int_{-\infty}^5\left(3e^{3x}\right)dx$
$\int\tan\left(-x\right).\sec\left(-x\right)^2dx$
$\frac{dy}{dx}=y\left(x\right)\left(4-y\left(x\right)\right)-3$
$\left(4x\:+8y+3\right)^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!