limx→0(1x⋅ sin(x)−1x⋅ tan(x))\lim_{x\to0}\left(\frac{1}{x\cdot\:sin\left(x\right)}-\frac{1}{x\cdot\:tan\left(x\right)}\right)x→0lim(x⋅sin(x)1−x⋅tan(x)1)
dydx4x3ex2+3x+2\frac{dy}{dx}4x^3e^{x^2+3x+2}dxdy4x3ex2+3x+2
∫x2+3x+1x−1dx\int\frac{x^2+3x+1}{x-1}dx∫x−1x2+3x+1dx
18bc2−242c18bc^2-24^2c18bc2−242c
2sin(2x)−sin(4x)2sin(2x)+sin(4x)=tan(x)2\frac{2sin\left(2x\right)-sin\left(4x\right)}{2sin\left(2x\right)+sin\left(4x\right)}=\tan\left(x\right)^22sin(2x)+sin(4x)2sin(2x)−sin(4x)=tan(x)2
(5f2+2r)2\left(5f^2+2r\right)^2(5f2+2r)2
limx→−1(sin(x3+1)x5+1)\lim_{x\to-1}\left(\frac{sin\left(x^3+1\right)}{x^5+1}\right)x→−1lim(x5+1sin(x3+1))
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!