$\sqrt{z^{20}}$
$8x^2-6x-12$
$36n^2+12n+1$
$\frac{dy}{dx}=\frac{y}{x^2+1}$
$-3\:+2\:\cdot2$
$\left(\frac{1}{4}x+\frac{2}{5}y\right)\left(\frac{1}{4}x-\frac{2}{5}y\right)$
$\lim_{x\to\infty}\left(\frac{4x^4+4x^2+1}{x^2-2x-1+x^2+x}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!