$\lim_{x\to\infty}\left(\frac{8}{9}\right)^x$
$\cot^4x+\cot^2x$
$-5y\:+\:4+t=\frac{dy}{dt}$
$\int-3\left(4^{4-2x}\right)dx$
$-3x^2+5;\:x=0$
$\left(1+\sin\:\left(\alpha\:\right)\right)^'\left(1-\sin\:\left(\alpha\:\right)\right)^'=\frac{1}{\sec\:^2\left(\alpha\:\right)}$
$\left(xy^2+3xy\right)dx-dy=0$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!