∫sinxcos(x2)dx\int sinxcos\left(\frac{x}{2}\right)dx∫sinxcos(2x)dx
2x+3x−1<2\frac{2x+3}{x-1}<2x−12x+3<2
3x−6−3x+133x-6-3x+133x−6−3x+13
dydx=(y2)x−1\frac{dy}{dx}=\frac{\left(y^2\right)}{x-1}dxdy=x−1(y2)
∫cos3(10x)dx\int cos^3\left(10x\right)dx∫cos3(10x)dx
−x2+6x+3-x^2+6x+3−x2+6x+3
x3+5x2+10x−15x−4\frac{x^3+5x^2+10x-15}{x-4}x−4x3+5x2+10x−15
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!