Exercise
$tan\left(x\right)+\cot\left(x\right)-2\csc\left(2x\right)=0$
Step-by-step Solution
Learn how to solve proving trigonometric identities problems step by step online. Prove the trigonometric identity tan(x)+cot(x)-2csc(2x)=0. Starting from the left-hand side (LHS) of the identity. Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}. Applying the cosecant identity: \displaystyle\csc\left(\theta\right)=\frac{1}{\sin\left(\theta\right)}. Using the sine double-angle identity: \sin\left(2\theta\right)=2\sin\left(\theta\right)\cos\left(\theta\right).
Prove the trigonometric identity tan(x)+cot(x)-2csc(2x)=0
Final answer to the exercise
true