Multiply the single term tan(t)\tan\left(t\right)tan(t) by each term of the polynomial (3cos(t)−csc(t))\left(3\cos\left(t\right)-\csc\left(t\right)\right)(3cos(t)−csc(t))
Try other ways to solve this exercise
cotx−cot2x=cossec\cot x-\cot2x=\cos\seccotx−cot2x=cossec
1625m2+165mn+4n2\frac{16}{25}m^2+\frac{16}{5}mn+4n^22516m2+516mn+4n2
25a2+50ab+25b2 \sqrt{25a^2+50ab+25b^2\:}25a2+50ab+25b2
(4x3−2)(4x3+2)\left(4x^3-2\right)\left(4x^3+2\right)(4x3−2)(4x3+2)
−2⋅(2)2⋅(−2)2-2\cdot\left(2\right)^2\cdot\left(-2\right)^2−2⋅(2)2⋅(−2)2
∫2tan(x)sec(x)3dx\int2\tan\left(x\right)\sec\left(x\right)^3dx∫2tan(x)sec(x)3dx
(2x+y+z2a)2\left(2x+y+z^{2a}\right)^2(2x+y+z2a)2
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!