Apply the trigonometric identity: sin(x)cos(y)\sin\left(x\right)\cos\left(y\right)sin(x)cos(y)=sin(x+y)+sin(x−y)2=\frac{\sin\left(x+y\right)+\sin\left(x-y\right)}{2}=2sin(x+y)+sin(x−y)
Try other ways to solve this exercise
533⋅532⋅5353^3\cdot53^2\cdot53533⋅532⋅53
3(x+1)−3(x−2)3\left(x+1\right)-3\left(x-2\right)3(x+1)−3(x−2)
−8 + −1 − −64 − 12\:\:\:\:\:\:-8\:\:+\:\:\:\:\:\:-1\:\:\:\:\:-\:\:\:-64\:\:\:-\:\:\:\:12−8+−1−−64−12
3x2−9x+200>03x^2-9x+200>03x2−9x+200>0
3w2−30w+753w^2-30w+753w2−30w+75
(5x +2 7y)3\left(\sqrt{5x\:+2\:\sqrt{7y}}\right)^3(5x+27y)3
∫e3(x2+2x+1)dx\int e^3\left(x^2+2x+1\right)dx∫e3(x2+2x+1)dx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!