$\lim_{x\to\infty}\left(\ln\left(1-\frac{2}{n}\right)^n\right)$
$\frac{1+\cos\left(t\right)}{\sin\left(t\right)}-\frac{\sin\left(t\right)}{1+\cos\left(t\right)}=2\cot\left(t\right)$
$-13\left(10n\:-\:7\right)\:+\:6n$
$-588+-50$
$\frac{x}{-2}-15=-35$
$3-4sin\left(\frac{2}{3}\left(x-1\right)\right)$
$\frac{\left(3x+\left|x\right|\right)}{x}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!