$\int\frac{7\left(1+s\right)}{s\left(s^2+8s+7\right)}ds$
$-3x+2y=6$
$8ab+3a-2ab+5a+7a$
$\frac{sin^2\left(x\right)+2sin\left(x\right)+1}{\cos^2\left(x\right)}=\frac{1+sin\left(x\right)}{1-sin\left(x\right)}$
$\lim_{x\to\infty}\left(\frac{4x^3+10x^2+4x}{x^3+2x^2}\right)$
$\lim\:_{x\to\:1}\left(\frac{x^2-x}{\sqrt[3]{x}-1}\right)$
$\sqrt[5]{y^3}+6$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!