$9x^2-4\ge0$
$17+14+6\left(7\right)$
$\lim_{x\to\infty\:}\left(\frac{x^2+\sqrt{x}}{x^2-\sqrt{x}}\right)$
$\frac{d}{dx}\ln\sqrt[3]{8x^2+7}$
$\frac{\left(\frac{4}{x+h}-\frac{4}{x}\right)}{h}$
$\left(x^2-y\right)dx-xdy=0\:$
$\left(-27\right):\left(-9\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!