$\lim_{x\to1}\left(x-1\right)^4\sin\left(\frac{1}{\sqrt[3]{x-1}}\right)$
$\lim_{x\to\pi}\left(x^2-\pi^2\:\right)$
$\frac{\ln\left(y\right)}{\ln\left(x\right)}dy-\frac{x^4}{y^2}dx=0$
$\int5x\cos\left(2x-1\right)dx$
$\frac{2}{3}\left(\frac{x-5}{4}\right)+\frac{2x}{5}$
$5a+5a$
$m^2-4m+1$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!