$\lim_{x\to\infty}\left(ln\left(x^2+1\right)-2ln\left(3x+6\right)\right)$
$\int-15x^5\sqrt{x^2+2}dx$
$-4x^3+10x^2-6$
$1,6\cdot12$
$\left(1-cosx\right)^2+2\cdot cotx\cdot senx=1+cos^2x$
$\:8\:x\:-\:12\:y\:+\:32$
$\left(-2u^2-6u-6\right)-\left(-5u^2+6u+3\right)+\left(7u^2+8u+5\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!