$\int\frac{1}{x}\left(\sqrt{1+\frac{1}{x^4}}\right)dx$
$\lim_{x\to0}\left(\frac{x}{\sqrt{a+x}\:-\:\sqrt{a-x}}\right)$
$\frac{dy}{dx}\left(x^2+y^2=6x+8y\right)$
$5^{5^{5^x}}\cdot5^{5^x}\cdot5^x$
$1+a+a^2+a^3+a^4+a^5$
$3-.77$
$\left(\frac{\sqrt{1-2x^2}\left(x+3\right)}{\left(4x-1\right)^2}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!