(sec2x−1)cos2x=sin\left(\sec^2x-1\right)\cos^2x=\sin(sec2x−1)cos2x=sin
1+x=sin(xy2)1+x=sin\left(xy^2\right)1+x=sin(xy2)
7+3(1−2x)7+3\left(1-2x\right)7+3(1−2x)
35−3x⋅35−2x⋅x35-3x\cdot35-2x\cdot x35−3x⋅35−2x⋅x
(2a2−6a3)2\left(2a^2-6a^3\right)^2(2a2−6a3)2
(cotθ +cscθ )⋅ (tanθ −sinθ )\left(cot\theta\:+csc\theta\:\right)\cdot\:\left(tan\theta\:-sin\theta\:\right)(cotθ+cscθ)⋅(tanθ−sinθ)
sin(x)cos(x) =−25\frac{sin\left(x\right)}{cos\left(x\right)}\:=-\frac{2}{5}cos(x)sin(x)=−52
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!