$1+\cot^2\left(\frac{2\pi}{3}\right)$
$\int_0^{\infty}\left(x+1\right)e^xdx$
$-2\:\frac{3}{4}\left(14\right)$
$\left(x+6\right)^2=x^2+6x+36$
$\left(5y-7x-37\right)^2$
$\lim_{x\to-\infty}\left(\frac{x-2}{\left(x+1\right)^2}\right)$
$2b^{-4}\:a^{-1}b^3$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!