$\left(\cos\left(x\right)\right)\left(\cos\left(x\right)-\tan\left(x\right)\sin\left(x\right)\right)=\cos\left(x\right)^2$
$\lim_{x\to\infty}\left(\frac{2x^2+8}{5x^3+6}\right)$
$\int\left(3x+1\right)\cdot\left(5x+8\right)^{-\frac{3}{5}}$
$\lim_{n\to\infty}\left(\frac{4^n}{5^{n-1}}\right)$
$3x+6x-4x+2x$
$\log_{10}\left(2x\right)=1$
$34j^2+92j=0$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!