$\lim_{x\to\infty}\left(\frac{\sqrt{x}}{1+\sqrt{x}}\right)$
$\frac{dy}{dx}=ln\left[\frac{x\sqrt{x-7}}{\left(3x-8\right)^4}\right]$
$\lim_{x\to-1}\left(\frac{\left(2x+3\right)^{4x+1}-1}{x+1}\right)$
$\frac{1}{2}\cdot8\left(3+9\right)$
$\lim_{h\to7}\frac{x+8}{x-7}$
$3x^2+6x-1$
$2\left(6^{n+1}\right)-5\left(6^n\right)-6^n$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!