dydx=5x4y(x2+1)\frac{dy}{dx}=\frac{5x}{4y\sqrt{\left(x^2+1\right)}}dxdy=4y(x2+1)5x
(x+2)+(3x+4x)\left(x+2\right)+\left(3x+4x\right)(x+2)+(3x+4x)
limx→∞(x+3x2+4)\lim_{x\to\infty}\left(\frac{x+3}{\sqrt{x^2+4}}\right)x→∞lim(x2+4x+3)
(−21)+15−(−12)\left(-21\right)+15-\left(-12\right)(−21)+15−(−12)
∫03m(f)dx\int_0^{3m}\left(f\right)dx∫03m(f)dx
t2−17t−72t^2-17t-72t2−17t−72
(6a+8)(6a+8)\left(6a+8\right)\left(6a+8\right)(6a+8)(6a+8)
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!