$\lim_{x\to\infty}\left(1+sin\left(\frac{\pi}{x}\right)^{\frac{x}{4}}\right)$
$\int e^{2x}\:\cos\left(5x\right)dx$
$=ln\left(\frac{x^{\pi}\pi^x}{ln\left(x^{\sqrt{2}}\right)}\right)$
$\frac{dy}{dx}\left(\frac{3x^4-9x^3+5}{x^2}\right)$
$\log24=\log z+2\log2$
$\int_{-2}^2\left(e^{-x}\right)dx$
$\int\:\sqrt{sec\left(2x\right)}dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!