$x^2-6x=-3$
$\int\frac{\cos\left(x\right)}{\sqrt{2-\left(\left(\sin\left(x\right)\right)^2\right)}}dx$
$\left(+4\right)-\left(-6\right)+\left(-8\right):\left(-4\right)+\left(-5\:-2\right)$
$\frac{2.449489742783178+2\cdot2^3}{\left(4-1\right)\left(\left(2\cdot2\right)^2-4\cdot2+1\right)}$
$\lim_{x\to\infty}\left(\frac{3x+5}{x-4}\right)$
$\sqrt[6]{8x}$
$\lim_{x\to1}\left(\frac{\left(1-x+\ln\left(x\right)\right)}{\left(1+cos\left(3\cdot\pi\right)\right)}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!