∫(13cos2x−14tanxcosx)dx\int\left(\frac{\frac{1}{3}cos^2x-\frac{1}{4}tanx}{cosx}\right)dx∫(cosx31cos2x−41tanx)dx
((3j−3k6)4j−2k−8)12\left(\frac{\left(3j^{-3}k^6\right)^4}{j^{-2}k^{-8}}\right)^{\frac{1}{2}}(j−2k−8(3j−3k6)4)21
16m2+16m+4n216m^2+16m+4n^216m2+16m+4n2
dy=(x2+x2y2)dxdy=\left(x^2+x^2y^2\right)dxdy=(x2+x2y2)dx
4(−6)−34\left(-6\right)-34(−6)−3
∫2x4x2−2xdx\int\frac{2x^4}{x^2-2x}dx∫x2−2x2x4dx
∫3x−1x2−1dx\int\frac{3x-1}{x^2-1}dx∫x2−13x−1dx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!