$\lim_{x\to1}\left(\frac{x\ln\left(x\right)-x-1}{\left(x-1\right)\ln\left(x\right)}\right)$
$n2+5n-14$
$\int\frac{x^3-3x+4}{\left(x+1\right)\left(x-1\right)}dx$
$cos\left(x+y\right)=cos\left(x\right)cos\left(y\right)-sin\left(x\right)sin\left(y\right)$
$-6\:+9\:+4\:+\:-2\:-6\:-9\:-\:-3\:-5\:-6$
$\lim_{x\to\frac{5\pi}{6}}\left(\cos\left(2x\right)\sin\left(3x\right)\right)$
$0.6\:plus\:15\:b\:plus\:4\:equals\:25.6.$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!