8cos(2x)=8cos2(x)−38cos\left(2x\right)=8cos^2\left(x\right)-38cos(2x)=8cos2(x)−3
∫03(xe−2x)dx\int_0^3\left(xe^{-2x}\right)dx∫03(xe−2x)dx
(−34)⋅(−16)\left(-34\right)\cdot\left(-16\right)(−34)⋅(−16)
a5⋅ a4a2\frac{a^5\cdot\:a^4}{a^2}a2a5⋅a4
2dydx dy2d2x=1\frac{2dy}{dx}\:\frac{dy^2}{d^2x}=1dx2dyd2xdy2=1
−541−874-541-874−541−874
x+2x2+x3x+2x^2+x^3x+2x2+x3
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!